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111. CONCLUSIONS 
It has been shown that the proposed method is the fastest among 

known pipelined vector-reduction methods. While the SM- and AM- 
methods proposed by Ni and Hwang are improvements of Kogge's 
method for n 2 q, the SM- and AM-metho&performzorse than 
Kogge's method for n < q. The proposed SM- and AM-methods 
are faster than Kogge's method for all values of n. The hardware 
implementation requirements for the m- and m-method are about 
the same as for the SM- and AM-methods. 
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Setup Algorithms for Cube-Connected Parallel 
Computers Using Recursive Karnaugh Maps 

A. Yavuz O r u ~  and M. Mittal 

Abstract- This paper presents optimal setup procedures for cube- 
connected networks. The setup patterns include paths, transpositions, 
cycles, and one-pass permutations. For an N-input cube-connected net- 
work, the procedure for paths requires O(log2 N )  steps, and O(N) 
space, that for transpositions and cycles requires O(N)  steps, and O(N) 
space, and that for permutations takes O(N log2 N )  steps, and O(N)  
space. Furthermore, the time complexities of the setup procedures for 
transpositions, cycles, and permutations can be improved as O(log2 N )  
by using O(N)  processors. 

Index Terms-Cube-connected network, cycle, Karnaugh map, permu- 
tation, setup algorithm, transposition. 

I. INTRODUCTION 
A parallel computer with cube interconnection topology can be 

formed in one of two ways [1]-[4], [11]-[13]: 1) by placing N 
processors, where N = 2', at the vertices of an N-cube whose edges 
represent physical links among the processors; 2) by setting up an 
N-input, N-output and r-stage network of 2 x 2 crossbar cells such 
that the cells in the ith stage correspond to the edges along the ith 
dimension of the N-cube. A cube-connected network is then used 
to interconnect system components such as processors and memory 
units. 

In this paper, we consider the routing problems that arise in parallel 
computers with cube-connected networks. The term routing here 
refers to specifying connection pattems between the inputs and the 
outputs of a cube-connected network. More specifically, we present 
fast algorithms to set up paths, pairwise exchanges, cycles, and 
permutations on a cube-connected network. These routing problems 
have been previously addressed in the literature [5], [7], [8], [ l l] ,  
[14]-[16]. Setting up a path between two processors can be done by 
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using the self-routing property of a cube-connected network [7]. On 
the other hand, setting up transpositions, cycles, and permutations is 
not so straightforward. 

A cube-connected network cannot realize all permutations on a 
set of N elements; previous work mostly characterized the one-pass 
permutations that can be realized by a cube-connected network, with 
conditions on the binary representations of the inputs and outputs 
[7j, [ll],  [16], [8], [SI. One then uses these conditions to determine 
whether a specific permutation is realizable by a cube-connected 
network in a single pass, and if so, to set up the required paths. 
This approach works quite well for permutations which satisfy the 
asserted conditions. 

Lawrie [7] developed another method which decomposes a specific 
permutation into paths among pairs of inputs and outputs, and sets 
the cells until a conflict is encountered. In this paper, rather than 
allowing any conflict to arise as paths are being set up, we monitor 
possible conflicts of a given permutation stage by stage. 

We view a cube-connected network as a three-part structure: two 
cube-connected subnetworks and an extra stage of 2 x 2 cells, each 
drawing exactly one input from each subnetwork as shown in Fig. 1. 
The setup procedure, employing the divide and conquer approach, 
proceeds from the output side recursively through the network toward 
the input side as long as the cells within each subnetwork can 
accommodate the connection requirements. This divide and conquer 
process is facilitated with the use of recursive Kamaugh maps which 
provide a compact characterization of the interconnection structure 
of a cube-connected network without resorting to algebraic maps to 
describe the functionality of the switching cells and the links between 
the stages. 

A setup procedure for realizing pairwise exchanges, or transposi- 
tions between pairs of inputs and outputs, is also presented. Even 
though the setup procedure for permutations can also be used for 
transpositions, a separate one is developed as it requires only O ( N )  
steps for an N-stage cube-connected network. As a byproduct, an 
O ( N )  setup procedure for certain cycles is also produced. 

11. RECURSIVE KARNAUGH lMAp REPRESENTATION 
Kamaugh maps [6] are a common tool of logic designers for 

simplifying Boolean expressions. They can also be used to capture the 
structure of a cube-connected network as shown in Fig. 2. Adjacent 
cells in the Kamaugh map correspond to the pairings of symbols at 
the inputs (outputs) of the switching cells in the network. Kamaugh 
maps such as the one shown in Fig. 2 provide a convenient way of 
representing a cube-connected network. However, they need to be 
put in a recursive form to exploit the recursive structure of such a 
network. 

Definition I: An r-half; denoted H , ;  T 2 0 is a Kamaugh map 
with 2" cells, and is recursively defined as HO = [O]; H ,  = 
[H,-1; Hr-l  + 2"- ' ] ; r  2 1 such that any two cells z and y 
in H,  are adjacent if and only if either they are also adjacent in 

0 
Here, Hr-l + 2r-1 is a vector consisting of as many elements 

as there are in Hr-l and whose entries are determined by adding 
2r-1 to those in Hr- l .  In Fig. 3, the entries of H I  are formed by 
concatenating HO and HO + 2'; H Z  and H3 are obtained similarly. 

It is evident from Definition 1 that, for any T 2 1, the r-half H, 
consists of two halves which will be denoted RO and 7 - 1 1 ,  where 
7-10- HF--l,  and 7-11  e Hr-l + 2"-'. It can be easily be shown 
that the binary representation of any number between 0 and N - 1, 
where N = 2', corresponds to a unique location in the r-half. That 
is, each number is mapped into a distinct cell such that its most 
significant bit matches the index of a half at the outermost level, the 
next most significant bit matches the index of a half in the next level, 
and so on until the least significant bit matches the index of a half 
at the innermost level. 

Hr- l ,  or H,-1 + 2r -1 ,  OT 11 - yI = 2'-l. 
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Fig. 2. (a) A cube-connected network and (b) its Karnaugh map. 

5 6 7 H3 

The recursive Karnaugh maps are naturally tied with the sub- 
network structure of a cube-connected network as follows. Each 
half, 3-10 or 3-11, represents an N/2-input and ( r  - 1)-stage cube- 
connected network via the adjacencies among its cells. Furthermore, 
the adjacencies formed by pairing each cell in 3-10 with its adjacent 
counterpart in 3-11 correspond to another set of N / 2  2 x 2 cells. These 
three components combined together form an (N-input, r-stage) cube- 

___. 

connected network as shown in Fig. 1. This equivalence between map 
H, and an r-stage cube-connected network forms the basis of all the 
routing procedures presented here. 

111. REALIZATION OF PATHS 

This section presents a recursive procedure to realize paths in a 
cube-connected network. The objective in developing a recursive 
version is to show that the recursive Kamaugh maps form a compact 
data structure that can be used in connection with any routing 
algorithm for cube-connected networks. 

Definition 2: 
a) A sequence of cells z1z2.. zm in H, is said to be mono- 

tonically increasing if x, is adjacent to z,+l; 1 < a < m - 
1, andlz,+l-zZ1l 2 1z , - zC1- -11 ;2< i<m-1 .0137and  
3 2 0 4 are both monotonically increasing sequences in H3. 

b) Cell z is said to be the dual of cell y in H,  if 1z - yI = 2'-'. 
0 

Theorem 1: Let z and y be any two cells in H,. There exists one 
and only one monotonically increasing sequence which starts with z 
and ends with y. 

Proofi The proof uses induction on r .  Assuming that there exists 
one and only one monotonically increasing sequence between every 
two cells in Eo = HrPl, we need to show that there also exists 
one and only such sequence between every two cells in H,. There are 
three cases to consider. If z and y both belong to EO, the statement is 
true by the induction assumption. If they both belong to Xi, then we 
know that there exists a monotonically increasing sequence between 
the duals of z and y in 3-10. By translating each of the cells in this 
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sequence to their duals in E l ,  a monotonically increasing sequence 
between x and y is obtained. The uniqueness of this sequence 
follows from that of the original sequence. Finally, if z and y belong 
to different halves of H,, then we have a unique monotonically the two sides are adjacent in a subhalf of H,, etc. 
increasing sequence from one of the cells, say x, to the dual of the 
other. Let this sequence be 5 ~ 1 ~ 2 . .  . zz where xl is the dual of y. 
Since ly - xz I > Ixj - z3-1 I for all j = 2,3,  * , i; xz1zz. . . x,y 
is also a monotonically increasing sequence. Its uniqueness follows 
from that of zxlzz.. . zt. U 

length m = 2' is called a u-cycle if, after dividing it in the middle, 
the leftmost entries on the two sides are adjacent in a subhalf of H,, 
say H,, after dividing each side in the middle, the leftmost entries on 

0 
For example, 

m m As an immediate corollarv. we have: ,, 
Corollary 1.1: There exists one and only path from any input x to 

any output y in a cube-connected network. 
As described in the following procedure, this path is established 

by appropriately setting the switching cells in the network whose 
inputs correspond to the adjacent cells in the monotone increasing 
sequence between x and y. For example, for x = 0 and y = 13, 
the monotonically increasing sequence is 0 15  13. To set up the path 
from input 0 to output 13, the top input of cell  SO,^ is connected to 
its bottom output, the top input of cell S1,s is connected to its bottom 
output, and the top input of cell SS, 13 is connected to its bottom output. 

Procedure PATH(x, y, T ; var P ) ;  
I f T = 1  

then P := x, y 
else 

begin 
If HALF(x, T )  = HALF(y, T )  

then P := PATH(x, y, T - 1) 
else P := PATH(x, DUAL(y, T ) ,  T - l ) ,  y 

end; 
endprocedure; 
The function HALF(x, r )  determines the half to which z be- 

longs in H,, and DUAL(y,r) computes the dual of y in H,. 
Each of these functions requires checking a single bit and hence 
can be evaluated in O(1) time. The time complexity of PATH 
is thus determined by the number of times it calls itself, which 
is O(T)  = O(log, N). The optimality of the number of steps 
follows from the fact that at least log, N bits must be examined 
to decode the end point of a path. The space complexity of PATH 
is also determined by the number of recursive calls which is again 
0 (log, N ) .  

Iv. REALIZATION OF TRANSPOSITIONS AND mCLES 

A transposition over a set of symbols is a permutation that fixes all 
but two of these symbols. Transpositions form an important family of 
permutations because they represent pairwise communications among 
a set of processors. This section presents an optimal routing procedure 
for realizing such maps on cube-connected networks. It is also shown 
that a transposition of any two symbols can be realized in at most two 
passes. The proof of this result indirectly leads to the characterization 
of certain cycles which are realizable by a cube-connected network 
in a single pass. 

Let x and y be any two symbols in H,. If z and y are adjacent 
in H,, then there exists a cell in the corresponding cube-connected 
network with inputs x and y. Therefore, the two can be transposed in 
one pass. On the other hand, if z and y are not adjacent in H,, then z 
and y cannot be transposed in one pass as the following result shows. 

Theorem2: Symbols x and y can be transposed by a cube- 
connected network in one pass if and only if z and y are adjacent 
in H,. 

Proof: See [9]. 
The above theorem asserts that at least two passes are needed 

to transpose any two symbols when they are not adjacent in H,. 
The next question that arises is whether it is possible to realize any 
transposition in two passes. The answer to this question is in the 
affirmative as shown below. 

First a few facts about cycle maps are needed. 
Definition 3: A cycle of m symbols, denoted (z1z2...zm), is a 

permutation which maps xt to z,+l(mod m). A cycle (ZIZZ . . .z,) of 

n n  n n  
(0 n n n n  1 2  3 4 5 6 7) and (0 n n n n  1 2  3 8 9 1213) 

are both u-cycles of length 8 with the adjacencies as indicated. Hence, 
0 and 4 are adjacent, 0 and 2 are adjacent, 4 and 6 are adjacent, etc. 
Notice that the entries need not be consecutive numbers; they must 
just be adjacent as marked by the overbars. 

Lemma 3.1: 
1) Each half of a u-cycle is also a u-cycle. 
2) The concatenation of two disjoint u-cycles ( ~ 1 ~ 2 . .  . z,) 

and (y1y2. . . ym), that is, ( ~ 1 ~ 2 . .  . z,ylyz. . . ym), is also a 
u-cycle if a) XI and y1 are adjacent, and b) I z1 - x,/2+1 1, 
I ~1 - Ym/z+l I < 1 2 1  - YI 1. 

Proof: It is straightforward and omitted. 0 
Theorem 3: An r-stage cube-connected network, where N = 2', 

can realize any u-cycle of length 2k in one pass for all k 5 T. 

Proof: We proceed by induction on r, and without loss of 
generality, let k = r. The proof of the case k < T follows directly 
from the case IC = T .  Now, for T = 1, the only cycle, i.e., (0 l), is a u- 
cycle, and it is realizable by a 1-stage cube-connected network which 
is just a 2 x 2 cell. Assume all u-cycles of length 2r-1 are realizable by 
an (T - 1)-stage cube-connected network in one pass. Consider a u- 
cycle of length 2', (z lzz . .  zzr--1c2p-1+1zz~-1+2~~~ ~ 2 7 ) .  Factor this 
cycle as ( ~ 1 ~ 2 .  .. 52p-1)(22r-1+122p-1+2 .c2~)(c1c2r-~+1). Now, 
by the first part of Lemma 3, the first two subcycles are both u-cycles 
of length 2'-', and hence by induction, each can be realized by an 
(r - 1)-stage cube-connected network in one pass. Moreover, since 
they are disjoint, we can realize both of them by the first r - 1 stages 
of an r-stage cube-connected network in one pass by assigning one 
to the upper (T - 1)-stage subnetwork, and the other to the lower 
(T - 1)-stage network. Finally, since the original cycle is a u-cycle, 
z1 and Z,~-I+~ are adjacent in H,, and hence (ZIZ~-I+~) can be 
realized by the last stage of the r-stage cube-connected network. 
Therefore, the entire expression can be realized by an r-stage cube- 

0 
The following particular form of u-cycles will prove to be es- 

sential for realizing transpositions in two passes by cube-connected 
networks. 

Definition 4: A u-cycle whose inverse is also a u-cycle is called a 

For example, (0 1 2 3 4 5 6 7 )  is a w-cycle as its inverse 
( 7 6 5 4 3 2 1 0 )  is also a u-cycle. On the other hand, since 13 and 
3 are not adjacent, (0 1 2 3 8 9 12 13) is not a w-cycle, i.e., its inverse 
(13 12 9 8 3 2 10) is not a u-cycle. 

connected network in one pass and the assertion follows. 

w-cycle. 0 

As an immediate corollary to Theorem 3, we have: 
Corollary 3.1: An r-stage cube-connected network can realize any 

0 
Furthermore, we have: 
Lemma 4.1: The concatenation of two w-cycles (21x2 . . - e m )  and 

(y1y2...ym), i.e., (z1c~...z,y1yZ...y~), is also a w-cycle if 
1) z1 and y1 are adjacent, 2) z, and ym are adjacent, 
3) 121 - xm/z+11, (y1 - Ym/z+lI 1.1 -yy1J, and 4) I z m  - 

0 
Theorem 4: Let c and y be any two symbols in H,. It is always 

w-cycle of length 2k in one pass for all k 5 r. 

< 
zm/2+11,1~m - Ym/2+11 < Izm - YmI. 

possible to form a w-cycle starting with z and ending with y. 
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Proof: We proceed by induction on T. The assertion is, clearly, 
valid for T = 1. Suppose that it is also valid for T- 1, i.e., it is possible 
to form a w-cycle between any two symbols in H,-1. To prove the 
assertion, we consider two cases. The first case is when z and y 
appear in the same half of H,. If that half is 3-10 then the assertion 
is valid by the induction hypothesis. If it is 3-11, then let x '  and y ', 
respectively, be the duals of z and y in 3-10. Now, by hypothesis, there 
exists a w-cycle which begins with z ' and ends with y '. To form a 
w-cycle between z and y, translate this w-cycle by adding 2r-1 to 
all of its entries. The second case is when z and y appear in different 
halves of H,, say z in 3-10 and y in 3-11. To construct a w-cycle from 
z to y, let z ' and y ', respectively, be the duals of z in 3-11 and y 
in 3-10. Now, by induction hypothesis, there exists a w-cycle in 3-10 
which begins with z and ends with y', and a w-cycle in 3-11 which 
begins with z ' and ends with y. Moreover, z and z ', and y and y ', 
are adjacent in H,. Finally, Iz - 011, Iy - PI < 1z - 2'1, Iy - y'l for 
all cy E 3-10, and /3 E 3-11. Hence, the hypothesis of Lemma 4.1 is 
satisfied, and the cycle obtained by concatenating the two w-cycles 

0 
The following procedure forms a w-cycle starting with z and 

Procedure CYCLE(z, y ,  r ;  var w); 

in 3-10 and 3-11 is also a w-cycle. 

ending with y. 

I f T = 1  

then w := z,y 
else 

begin 
If HALF(z, T) = HALF(?/, T) 

then w := CYCLE(%, y, T - 1) 
else w := CYCLE(z, DUAL(?/, T), T - l ) ,  

CYCLE(DUAL(2, T), y,  T - 1) 
end; 

endprocedure; 
In the worst case, each call to CYCLE results in at most two calls 

to itself until the index T of H,  reduces to 1. Since after each call, T 

reduces by one, in the worst case, a total of 2' - 1, or N - 1 calls 
will be made. Each call can be processed in 0 ( 1 )  time, and hence 
CYCLE takes O(N)  steps on a single processor. The optimality of 
the number of steps follows from the fact that one may have a cycle 
of up to N symbols, and hence, in the worst case, must read the 
images of up to N symbols to set up a cycle. If a separate processor 
is used to execute the call to CYCLE for each value of T,  then the 
overall time becomes O(T) = O(log, N ) using N processors. As 
for the space complexity, we need O ( N )  space to stack the O ( N )  
calls. 

Now the main result of this section follows. 
Theorem 5: A cube-connected network can realize the transposition 

of any two of its inputs in at most two passes. 
Proof: By induction on T,  we will prove that any transposition 

(zy) can be realized in two passes. If T = 1 then the assertion is 
valid, since there is only one transposition, and it is realizable by 
1-stage cube-connected network which is a 2 x 2 cell. Suppose the 
assertion is true for T - 1, i.e., it is always possible to realize a 
transposition of any two symbols in H,-I by an ( r  - 1)-stage cube- 
connected network in at most two passes. To prove the assertion, we 
consider two cases. The first case is when z and y appear in the 
same half of H,. If that half is 3-10, then the assertion is valid by 
induction hypothesis. If it is 3-11, then, the transposition of z and y 
can be induced directly from the transposition of their duals in 3-10. 
The second case is when z and y appear in different halves of H,, say 
z in 3-10 and y in 3-11. To prove the assertion, we observe that (z y) 
can be factored as (y 'z lz~ .  . . z , z ) ( , y ~ y ) ( y ' z l z ~ ~ ~ ~  z,z)-l where 
(y'zlzz.. . z,z) is a w-cycle and y is the dual of y in 'Ho.  Now, 
by Corollary 3.1, both the first and last cycles in this factorization 
are realizable in one pass by an r-stage cube network. Moreover, 
since y and yf  are adjacent in H,, and form the inputs of a cell in the 
r th stage of an r-stage network, the product (y'zlzz . . . z,z)(y'y) 
is realizable by that network in one pass. Thus, the entire product, 
i.e., (y'zlzz -. .zmz)(y'y)(yfzlzz ...z,,,z)-' is realizable in two 

0 passes, and hence the assertion. 

Thus, the transposition of any two symbols, z and y, in H,  can 
always be factored into a product of two w-cycles, and another 
transposition which is realizable in at most two passes. Once the 
dual of y is determined, the w-cycle from z to the dual of y can be 
obtained by using Procedure CYCLE. This w-cycle and its inverse, 
together with the transposition (yy') can then be used to realize (z y) 
in at most two passes. Note that the time and space complexities of 
this procedure will be the same as those for CYCLE. 

Theorem 5 holds trivially if the switches in the network can be set 
to route their inputs to their outputs on a nonpermutation basis. That 
is, if either input can be routed to either output with the other input 
and output left floating, then (z y) can be realized simply by routing 
z to y in the first pass, and y to z in the second pass. The constraint 
that each switch can only be set to either the identity or transposition 
map makes the realization of transpositions more involved. 

v. REALIZATION OF PERMUTATIONS 
We now present a procedure to set up a cube-connected network for 

a arbitrary permutation which it can realize in one pass. First, recall 
that the half representation partitions the inputs of an r-stage cube- 
connected network into two disjoint sets 3-10 and 3-11. This partition 
induces the three-part network structure shown in Fig. 1, and leads 
to the following theorem. 

Theorem 6: Let p be a permutation such that p ( z )  = y for some 
two symbols z and y in H,. If p is realizable by an r-stage cube- 
connected network in one pass then 

a) If z, y E 3-10, or z, y E 'HI then the last stage cell, one of 
whose outputs is y, must be set to the identity state. 

b) If E E 3-10 and y E 3-11, or y E 3-10 and z E 'HI then the 
last stage cell, one of whose outputs is y, must be set to the 
transposition state. 

0 
Thus, for a given permutation, the states of the cells in the 

last stage of an r-stage cube-connected network can be determined 
without considering the states of the cells in the ( r  - 1)-stage 
subnetworks. The state of each such cell is determined according 
to whether its outputs draw their inputs from the same or different 
subnetworks under the specified permutation. More precisely, the 
specified permutation cannot be realized if the outputs of any cell 
in the last stage draw their inputs from the same (T - 1)-stage 
subnetwork. As described in the following procedure, this principle 
can be applied recursively to the last stages of each subnetwork until 
a subnetwork consists of a 2 x 2 cell. For convenience, we work with 
q = p-' in the procedure. 

Proof: The proof is straightforward and omitted. 

Procedure PERMUTATION(q, N; var y, realizable); 
For y := 0 to N/2 - I d 0  

If q(y) E 3-10 and q ( y  + N/2) E 3-11 
then set cell S y , y + ~ / z  to identity 
else 

If E 3-11 and Q(Y + (N/2)) E 70, 
then set cell S y , y + ~ / z  to transposition; 
else realizable := false 

endfor; 
If N > 2 and realizable 

then 
begin 
PERMUTATION (LOWER( q) ,  N/2) 
If realizable then 
PERMUTATION (UPPER( q ) ,  N/2) 
else {skip} 
end; 

endprocedure; 
The variable realizable is initialized to true before the execution 
of PERMUTATION starts. The for loop determines the states of 
the cells in the last stage of the network subject to the condition 
that their outputs be drawn from different subnetworks. If there is 
no conflict, then the procedure calls itself to work on the upper 
subnetwork, and then the lower subnetwork provided that realizable 
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remains true. Functions LOWER(q) and UPPERfq) in the recursive 
calls, respectively, refer to the first and second halves of map q. The 
procedure repeats calling itself until either realizable becomes false, 
or N = 2. Consequently, it either sets the network for mapp, or it 
signals that p is not realizable. 

Each call to PERMUTATION results in two calls to itself, and after 
each call, the size of the network reduces by a factor of 2. Thus, 
PERMUTATION is called once with value N, twice with value N / 2 ,  
four times with value N / 4 ,  and so on up to N f 2 times with value 2. 
Moreover, when it is called with value N / i ;  i = 1,2,4,  . . . , N / 2 ,  it 
takes O ( N / 2 i )  times to process the for loop. Summing these steps, 
the serial time complexity of this procedure becomes O ( N  log, N ) .  
This is optimal, since one needs at least O( N log, N )  bits to code the 
set of one-pass permutations of an N-input cube-connected network. 
The space complexity of the procedure is determined by the stack 
space for recursive calls which is O ( N ) .  

Furthermore, by using N / 2  processors, the time needed to execute 
the for loop can be reduced to O(1) per each call, and hence the 
execution of the overall procedure to O(log, N )  steps. This just 
requires making realizable a shared variable, and executing the calls 
to PERMUTATION for the upper and lower subnetworks in parallel. 
As a result, the procedure halts after O(log, N )  calls with each call 
completed in O( 1) time. 

VI. CONCLUDING REMARKS 
This paper presented optimal setup algorithms for cube-connected 

networks using recursive Karnaugh maps. All procedures have been 
shown to run in polynomial time and space. Procedure PERMUTA- 
TION is the most general of all the procedures which are presented 
in the paper, and can be used to determine whether a transposition, a 
cycle, or a permutation is realizable in one pass by a cube-connected 
network. It also specifies the states of the cells for the network in 
question whenever the network can realize the given map. On the 
other hand, procedure CYCLE requires fewer steps, and can be used 
to realize w-cycles and arbitrary transpositions including those which 
require two passes. 

These procedures can easily be generalized to other O(log, N) 
stage networks as well as to multipass cube-connected networks. It 
may also be worthwhile to extend them to delta and generalized 
interconnection networks [ 101, [ 11, since such networks share the 
unique path property of cube-connected networks. 
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A Parallel Time/Hardware Tradeoff 
T . H = 0(2” ’2 )  for the Knapsack Problem 

Afonso G. Ferreira 

Abstract-In this paper, we propose a parallel algorithm that solves 
a knapsack problem of size n in time T = O(n * (2”12)€) when 
P = 0( (2n /2 ) (1 -E ) ) ,  0 < - E 5 1, processors are available. The algorithm 
needs S = 0 ( 2 ” / ’ )  memory space in a shared memory. Let H (for 
hardware) be the number of processors plus the number of memory cells 
used by a parallel algorithm. The parallel algorithm that we describe 
here takes a linear time proportional to (n/2)  to find a solution when 
P = 0(2”12), leading to a tradeoff T . H = 0(2”/’). 

time/pmessor/memory tradeoff. 
Index rems- Knapsack problem, NP-complete, parallel algorithms, 

I. INTRODUCTION 
Given n positive integers W = (w1, w ~ , .  . . , w,) and a positive 

integer M ,  the knapsack problem is the decision problem of finding 
a set I C [l ,  n], such that w, = M ,  for i E I. In other words, one 
searches for a binary n-tuple C* = (21, 22,. . . , 2,) that solves the 
equation C wtxZ = M. This problem was proved to be NP-complete 
[lo] and, unless NP = P, its complexity is exponential in n. The 
original search space has 2“ possible values. An exhaustive search 
would then take O ( 2 ” )  time to find a solution in the worst case. 

Solving the knapsack problem can be seen as a way to study some 
large problems in number theory and, because of its exponential 
complexity, some public-key cryptosystems are based on it [16]. 
Therefore, much effort has been done in order to find techniques 
which could lead to practical algorithms with reasonable running 
times. 

In the literature, because of the exponential complexity of the 
problem, factors which are single degree polynomials in the size of 
the problem are usually neglected in the 0 notation. Notice that the 
size of a knapsack problem can be defined either as the cardinality 
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