
IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 2, FEBRUARY 1991 217

111. CONCLUSIONS
It has been shown that the proposed method is the fastest among

known pipelined vector-reduction methods. While the SM- and AM-
methods proposed by Ni and Hwang are improvements of Kogge's
method for n 2 q, the SM- and AM-metho&performzorse than
Kogge's method for n < q. The proposed SM- and AM-methods
are faster than Kogge's method for all values of n. The hardware
implementation requirements for the m- and m-method are about
the same as for the SM- and AM-methods.

REFERENCES

D. J. Kuck, The Structure of Computers and Computations, Vol. 1. New
York: Wiley, 1978.
P. M. Kogge, The Architecture of Pipelined Computers. New York:
McGraw-Hill, 1981.
L.M. Ni and K. Hwang, "Vector reduction methods for arithmetic
pipelines," IEEE Trans. Comput., vol. C-34, no. 5, May 1985.
H. X. Lin and H. J. Sips, "Vector-reduction algorithms and architec-
tures," J. Parallel Distributed Comp., vol. 5, no. 2, 1988.

Setup Algorithms for Cube-Connected Parallel
Computers Using Recursive Karnaugh Maps

A. Yavuz O r u ~ and M. Mittal

Abstract- This paper presents optimal setup procedures for cube-
connected networks. The setup patterns include paths, transpositions,
cycles, and one-pass permutations. For an N-input cube-connected net-
work, the procedure for paths requires O(log2 N) steps, and O(N)
space, that for transpositions and cycles requires O(N) steps, and O(N)
space, and that for permutations takes O(N log2 N) steps, and O(N)
space. Furthermore, the time complexities of the setup procedures for
transpositions, cycles, and permutations can be improved as O(log2 N)
by using O(N) processors.

Index Terms-Cube-connected network, cycle, Karnaugh map, permu-
tation, setup algorithm, transposition.

I. INTRODUCTION
A parallel computer with cube interconnection topology can be

formed in one of two ways [1]-[4], [11]-[13]: 1) by placing N
processors, where N = 2', at the vertices of an N-cube whose edges
represent physical links among the processors; 2) by setting up an
N-input, N-output and r-stage network of 2 x 2 crossbar cells such
that the cells in the ith stage correspond to the edges along the ith
dimension of the N-cube. A cube-connected network is then used
to interconnect system components such as processors and memory
units.

In this paper, we consider the routing problems that arise in parallel
computers with cube-connected networks. The term routing here
refers to specifying connection pattems between the inputs and the
outputs of a cube-connected network. More specifically, we present
fast algorithms to set up paths, pairwise exchanges, cycles, and
permutations on a cube-connected network. These routing problems
have been previously addressed in the literature [5], [7], [8], [l l] ,
[14]-[16]. Setting up a path between two processors can be done by

Manuscript received January 29, 1988; revised August 15, 1988.
A. Y. Orug is with the Department of Electrical Engineering, University of

M. Mittal is with Digital Equipment Corporation, Hudson, MA 01748.
IEEE Log Number 9037993.

Maryland, College Park, MD 20742.

using the self-routing property of a cube-connected network [7]. On
the other hand, setting up transpositions, cycles, and permutations is
not so straightforward.

A cube-connected network cannot realize all permutations on a
set of N elements; previous work mostly characterized the one-pass
permutations that can be realized by a cube-connected network, with
conditions on the binary representations of the inputs and outputs
[7j, [ll], [16], [8], [SI. One then uses these conditions to determine
whether a specific permutation is realizable by a cube-connected
network in a single pass, and if so, to set up the required paths.
This approach works quite well for permutations which satisfy the
asserted conditions.

Lawrie [7] developed another method which decomposes a specific
permutation into paths among pairs of inputs and outputs, and sets
the cells until a conflict is encountered. In this paper, rather than
allowing any conflict to arise as paths are being set up, we monitor
possible conflicts of a given permutation stage by stage.

We view a cube-connected network as a three-part structure: two
cube-connected subnetworks and an extra stage of 2 x 2 cells, each
drawing exactly one input from each subnetwork as shown in Fig. 1.
The setup procedure, employing the divide and conquer approach,
proceeds from the output side recursively through the network toward
the input side as long as the cells within each subnetwork can
accommodate the connection requirements. This divide and conquer
process is facilitated with the use of recursive Kamaugh maps which
provide a compact characterization of the interconnection structure
of a cube-connected network without resorting to algebraic maps to
describe the functionality of the switching cells and the links between
the stages.

A setup procedure for realizing pairwise exchanges, or transposi-
tions between pairs of inputs and outputs, is also presented. Even
though the setup procedure for permutations can also be used for
transpositions, a separate one is developed as it requires only O (N)
steps for an N-stage cube-connected network. As a byproduct, an
O (N) setup procedure for certain cycles is also produced.

11. RECURSIVE KARNAUGH lMAp REPRESENTATION
Kamaugh maps [6] are a common tool of logic designers for

simplifying Boolean expressions. They can also be used to capture the
structure of a cube-connected network as shown in Fig. 2. Adjacent
cells in the Kamaugh map correspond to the pairings of symbols at
the inputs (outputs) of the switching cells in the network. Kamaugh
maps such as the one shown in Fig. 2 provide a convenient way of
representing a cube-connected network. However, they need to be
put in a recursive form to exploit the recursive structure of such a
network.

Definition I: An r-half; denoted H , ; T 2 0 is a Kamaugh map
with 2" cells, and is recursively defined as HO = [O]; H , =
[H,-1; Hr-l + 2"- '] ; r 2 1 such that any two cells z and y
in H, are adjacent if and only if either they are also adjacent in

0
Here, Hr-l + 2r-1 is a vector consisting of as many elements

as there are in Hr-l and whose entries are determined by adding
2r-1 to those in Hr- l . In Fig. 3, the entries of H I are formed by
concatenating HO and HO + 2'; H Z and H3 are obtained similarly.

It is evident from Definition 1 that, for any T 2 1, the r-half H,
consists of two halves which will be denoted RO and 7 - 1 1 , where
7-10- HF--l, and 7-11 e Hr-l + 2"-'. It can be easily be shown
that the binary representation of any number between 0 and N - 1,
where N = 2', corresponds to a unique location in the r-half. That
is, each number is mapped into a distinct cell such that its most
significant bit matches the index of a half at the outermost level, the
next most significant bit matches the index of a half in the next level,
and so on until the least significant bit matches the index of a half
at the innermost level.

Hr- l , or H,-1 + 2r -1 , OT 11 - yI = 2'-l.

0018-9340/91/0200-0217$01.~ 0 1991 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

218

0-

1 -

N12-1-

N I 2 -
N12+1- . .

N-1 -

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 2, FEBRUARY 1991

Cube-connected Network

Cube-connected Network

m i 4

(b)
Fig. 2. (a) A cube-connected network and (b) its Karnaugh map.

5 6 7 H3

The recursive Karnaugh maps are naturally tied with the sub-
network structure of a cube-connected network as follows. Each
half, 3-10 or 3-11, represents an N/2-input and (r - 1)-stage cube-
connected network via the adjacencies among its cells. Furthermore,
the adjacencies formed by pairing each cell in 3-10 with its adjacent
counterpart in 3-11 correspond to another set of N / 2 2 x 2 cells. These
three components combined together form an (N-input, r-stage) cube-

___.

connected network as shown in Fig. 1. This equivalence between map
H, and an r-stage cube-connected network forms the basis of all the
routing procedures presented here.

111. REALIZATION OF PATHS

This section presents a recursive procedure to realize paths in a
cube-connected network. The objective in developing a recursive
version is to show that the recursive Kamaugh maps form a compact
data structure that can be used in connection with any routing
algorithm for cube-connected networks.

Definition 2:
a) A sequence of cells z1z2.. zm in H, is said to be mono-

tonically increasing if x, is adjacent to z,+l; 1 < a < m -
1, andlz,+l-zZ1l 2 1z , - zC1- -11 ;2< i<m-1 .0137and
3 2 0 4 are both monotonically increasing sequences in H3.

b) Cell z is said to be the dual of cell y in H, if 1z - yI = 2'-'.
0

Theorem 1: Let z and y be any two cells in H,. There exists one
and only one monotonically increasing sequence which starts with z
and ends with y.

Proofi The proof uses induction on r . Assuming that there exists
one and only one monotonically increasing sequence between every
two cells in Eo = HrPl, we need to show that there also exists
one and only such sequence between every two cells in H,. There are
three cases to consider. If z and y both belong to EO, the statement is
true by the induction assumption. If they both belong to Xi, then we
know that there exists a monotonically increasing sequence between
the duals of z and y in 3-10. By translating each of the cells in this

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 2, FEBRUARY 1991 219

sequence to their duals in E l , a monotonically increasing sequence
between x and y is obtained. The uniqueness of this sequence
follows from that of the original sequence. Finally, if z and y belong
to different halves of H,, then we have a unique monotonically the two sides are adjacent in a subhalf of H,, etc.
increasing sequence from one of the cells, say x, to the dual of the
other. Let this sequence be 5 ~ 1 ~ 2 . . . zz where xl is the dual of y.
Since ly - xz I > Ixj - z3-1 I for all j = 2,3, * , i; xz1zz. . . x,y
is also a monotonically increasing sequence. Its uniqueness follows
from that of zxlzz.. . zt. U

length m = 2' is called a u-cycle if, after dividing it in the middle,
the leftmost entries on the two sides are adjacent in a subhalf of H,,
say H,, after dividing each side in the middle, the leftmost entries on

0
For example,

m m As an immediate corollarv. we have: ,,
Corollary 1.1: There exists one and only path from any input x to

any output y in a cube-connected network.
As described in the following procedure, this path is established

by appropriately setting the switching cells in the network whose
inputs correspond to the adjacent cells in the monotone increasing
sequence between x and y. For example, for x = 0 and y = 13,
the monotonically increasing sequence is 0 15 13. To set up the path
from input 0 to output 13, the top input of cell SO,^ is connected to
its bottom output, the top input of cell S1,s is connected to its bottom
output, and the top input of cell SS, 13 is connected to its bottom output.

Procedure PATH(x, y, T ; var P) ;
I f T = 1

then P := x, y
else

begin
If HALF(x, T) = HALF(y, T)

then P := PATH(x, y, T - 1)
else P := PATH(x, DUAL(y, T) , T - l) , y

end;
endprocedure;
The function HALF(x, r) determines the half to which z be-

longs in H,, and DUAL(y,r) computes the dual of y in H,.
Each of these functions requires checking a single bit and hence
can be evaluated in O(1) time. The time complexity of PATH
is thus determined by the number of times it calls itself, which
is O(T) = O(log, N). The optimality of the number of steps
follows from the fact that at least log, N bits must be examined
to decode the end point of a path. The space complexity of PATH
is also determined by the number of recursive calls which is again
0 (log, N) .

Iv. REALIZATION OF TRANSPOSITIONS AND mCLES

A transposition over a set of symbols is a permutation that fixes all
but two of these symbols. Transpositions form an important family of
permutations because they represent pairwise communications among
a set of processors. This section presents an optimal routing procedure
for realizing such maps on cube-connected networks. It is also shown
that a transposition of any two symbols can be realized in at most two
passes. The proof of this result indirectly leads to the characterization
of certain cycles which are realizable by a cube-connected network
in a single pass.

Let x and y be any two symbols in H,. If z and y are adjacent
in H,, then there exists a cell in the corresponding cube-connected
network with inputs x and y. Therefore, the two can be transposed in
one pass. On the other hand, if z and y are not adjacent in H,, then z
and y cannot be transposed in one pass as the following result shows.

Theorem2: Symbols x and y can be transposed by a cube-
connected network in one pass if and only if z and y are adjacent
in H,.

Proof: See [9].
The above theorem asserts that at least two passes are needed

to transpose any two symbols when they are not adjacent in H,.
The next question that arises is whether it is possible to realize any
transposition in two passes. The answer to this question is in the
affirmative as shown below.

First a few facts about cycle maps are needed.
Definition 3: A cycle of m symbols, denoted (z1z2...zm), is a

permutation which maps xt to z,+l(mod m). A cycle (ZIZZ . . .z,) of

n n n n
(0 n n n n 1 2 3 4 5 6 7) and (0 n n n n 1 2 3 8 9 1213)

are both u-cycles of length 8 with the adjacencies as indicated. Hence,
0 and 4 are adjacent, 0 and 2 are adjacent, 4 and 6 are adjacent, etc.
Notice that the entries need not be consecutive numbers; they must
just be adjacent as marked by the overbars.

Lemma 3.1:
1) Each half of a u-cycle is also a u-cycle.
2) The concatenation of two disjoint u-cycles (~ 1 ~ 2 . . . z,)

and (y1y2. . . ym), that is, (~ 1 ~ 2 . . . z,ylyz. . . ym), is also a
u-cycle if a) XI and y1 are adjacent, and b) I z1 - x,/2+1 1,
I ~1 - Ym/z+l I < 1 2 1 - YI 1.

Proof: It is straightforward and omitted. 0
Theorem 3: An r-stage cube-connected network, where N = 2',

can realize any u-cycle of length 2k in one pass for all k 5 T.

Proof: We proceed by induction on r, and without loss of
generality, let k = r. The proof of the case k < T follows directly
from the case IC = T . Now, for T = 1, the only cycle, i.e., (0 l), is a u-
cycle, and it is realizable by a 1-stage cube-connected network which
is just a 2 x 2 cell. Assume all u-cycles of length 2r-1 are realizable by
an (T - 1)-stage cube-connected network in one pass. Consider a u-
cycle of length 2', (z lzz . . zzr--1c2p-1+1zz~-1+2~~~ ~ 2 7) . Factor this
cycle as (~ 1 ~ 2 . .. 52p-1)(22r-1+122p-1+2 .c2~)(c1c2r-~+1). Now,
by the first part of Lemma 3, the first two subcycles are both u-cycles
of length 2'-', and hence by induction, each can be realized by an
(r - 1)-stage cube-connected network in one pass. Moreover, since
they are disjoint, we can realize both of them by the first r - 1 stages
of an r-stage cube-connected network in one pass by assigning one
to the upper (T - 1)-stage subnetwork, and the other to the lower
(T - 1)-stage network. Finally, since the original cycle is a u-cycle,
z1 and Z,~-I+~ are adjacent in H,, and hence (ZIZ~-I+~) can be
realized by the last stage of the r-stage cube-connected network.
Therefore, the entire expression can be realized by an r-stage cube-

0
The following particular form of u-cycles will prove to be es-

sential for realizing transpositions in two passes by cube-connected
networks.

Definition 4: A u-cycle whose inverse is also a u-cycle is called a

For example, (0 1 2 3 4 5 6 7) is a w-cycle as its inverse
(7 6 5 4 3 2 1 0) is also a u-cycle. On the other hand, since 13 and
3 are not adjacent, (0 1 2 3 8 9 12 13) is not a w-cycle, i.e., its inverse
(13 12 9 8 3 2 10) is not a u-cycle.

connected network in one pass and the assertion follows.

w-cycle. 0

As an immediate corollary to Theorem 3, we have:
Corollary 3.1: An r-stage cube-connected network can realize any

0
Furthermore, we have:
Lemma 4.1: The concatenation of two w-cycles (21x2 . . - e m) and

(y1y2...ym), i.e., (z1c~...z,y1yZ...y~), is also a w-cycle if
1) z1 and y1 are adjacent, 2) z, and ym are adjacent,
3) 121 - xm/z+11, (y1 - Ym/z+lI 1.1 -yy1J, and 4) I z m -

0
Theorem 4: Let c and y be any two symbols in H,. It is always

w-cycle of length 2k in one pass for all k 5 r.

<
zm/2+11,1~m - Ym/2+11 < Izm - YmI.

possible to form a w-cycle starting with z and ending with y.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 2, FEBRUARY 1991

Proof: We proceed by induction on T. The assertion is, clearly,
valid for T = 1. Suppose that it is also valid for T- 1, i.e., it is possible
to form a w-cycle between any two symbols in H,-1. To prove the
assertion, we consider two cases. The first case is when z and y
appear in the same half of H,. If that half is 3-10 then the assertion
is valid by the induction hypothesis. If it is 3-11, then let x ' and y ',
respectively, be the duals of z and y in 3-10. Now, by hypothesis, there
exists a w-cycle which begins with z ' and ends with y '. To form a
w-cycle between z and y, translate this w-cycle by adding 2r-1 to
all of its entries. The second case is when z and y appear in different
halves of H,, say z in 3-10 and y in 3-11. To construct a w-cycle from
z to y, let z ' and y ', respectively, be the duals of z in 3-11 and y
in 3-10. Now, by induction hypothesis, there exists a w-cycle in 3-10
which begins with z and ends with y', and a w-cycle in 3-11 which
begins with z ' and ends with y. Moreover, z and z ', and y and y ',
are adjacent in H,. Finally, Iz - 011, Iy - PI < 1z - 2'1, Iy - y'l for
all cy E 3-10, and /3 E 3-11. Hence, the hypothesis of Lemma 4.1 is
satisfied, and the cycle obtained by concatenating the two w-cycles

0
The following procedure forms a w-cycle starting with z and

Procedure CYCLE(z, y , r ; var w);

in 3-10 and 3-11 is also a w-cycle.

ending with y.

I f T = 1

then w := z,y
else

begin
If HALF(z, T) = HALF(?/, T)

then w := CYCLE(%, y, T - 1)
else w := CYCLE(z, DUAL(?/, T), T - l) ,

CYCLE(DUAL(2, T), y, T - 1)
end;

endprocedure;
In the worst case, each call to CYCLE results in at most two calls

to itself until the index T of H, reduces to 1. Since after each call, T

reduces by one, in the worst case, a total of 2' - 1, or N - 1 calls
will be made. Each call can be processed in 0 (1) time, and hence
CYCLE takes O(N) steps on a single processor. The optimality of
the number of steps follows from the fact that one may have a cycle
of up to N symbols, and hence, in the worst case, must read the
images of up to N symbols to set up a cycle. If a separate processor
is used to execute the call to CYCLE for each value of T, then the
overall time becomes O(T) = O(log, N) using N processors. As
for the space complexity, we need O (N) space to stack the O (N)
calls.

Now the main result of this section follows.
Theorem 5: A cube-connected network can realize the transposition

of any two of its inputs in at most two passes.
Proof: By induction on T, we will prove that any transposition

(zy) can be realized in two passes. If T = 1 then the assertion is
valid, since there is only one transposition, and it is realizable by
1-stage cube-connected network which is a 2 x 2 cell. Suppose the
assertion is true for T - 1, i.e., it is always possible to realize a
transposition of any two symbols in H,-I by an (r - 1)-stage cube-
connected network in at most two passes. To prove the assertion, we
consider two cases. The first case is when z and y appear in the
same half of H,. If that half is 3-10, then the assertion is valid by
induction hypothesis. If it is 3-11, then, the transposition of z and y
can be induced directly from the transposition of their duals in 3-10.
The second case is when z and y appear in different halves of H,, say
z in 3-10 and y in 3-11. To prove the assertion, we observe that (z y)
can be factored as (y 'z lz~ . . . z , z) (, y ~ y) (y ' z l z ~ ~ ~ ~ z,z)-l where
(y'zlzz.. . z,z) is a w-cycle and y is the dual of y in 'Ho. Now,
by Corollary 3.1, both the first and last cycles in this factorization
are realizable in one pass by an r-stage cube network. Moreover,
since y and yf are adjacent in H,, and form the inputs of a cell in the
r th stage of an r-stage network, the product (y'zlzz . . . z,z)(y'y)
is realizable by that network in one pass. Thus, the entire product,
i.e., (y'zlzz -. .zmz)(y'y)(yfzlzz ...z,,,z)-' is realizable in two

0 passes, and hence the assertion.

Thus, the transposition of any two symbols, z and y, in H, can
always be factored into a product of two w-cycles, and another
transposition which is realizable in at most two passes. Once the
dual of y is determined, the w-cycle from z to the dual of y can be
obtained by using Procedure CYCLE. This w-cycle and its inverse,
together with the transposition (yy') can then be used to realize (z y)
in at most two passes. Note that the time and space complexities of
this procedure will be the same as those for CYCLE.

Theorem 5 holds trivially if the switches in the network can be set
to route their inputs to their outputs on a nonpermutation basis. That
is, if either input can be routed to either output with the other input
and output left floating, then (z y) can be realized simply by routing
z to y in the first pass, and y to z in the second pass. The constraint
that each switch can only be set to either the identity or transposition
map makes the realization of transpositions more involved.

v. REALIZATION OF PERMUTATIONS
We now present a procedure to set up a cube-connected network for

a arbitrary permutation which it can realize in one pass. First, recall
that the half representation partitions the inputs of an r-stage cube-
connected network into two disjoint sets 3-10 and 3-11. This partition
induces the three-part network structure shown in Fig. 1, and leads
to the following theorem.

Theorem 6: Let p be a permutation such that p (z) = y for some
two symbols z and y in H,. If p is realizable by an r-stage cube-
connected network in one pass then

a) If z, y E 3-10, or z, y E 'HI then the last stage cell, one of
whose outputs is y, must be set to the identity state.

b) If E E 3-10 and y E 3-11, or y E 3-10 and z E 'HI then the
last stage cell, one of whose outputs is y, must be set to the
transposition state.

0
Thus, for a given permutation, the states of the cells in the

last stage of an r-stage cube-connected network can be determined
without considering the states of the cells in the (r - 1)-stage
subnetworks. The state of each such cell is determined according
to whether its outputs draw their inputs from the same or different
subnetworks under the specified permutation. More precisely, the
specified permutation cannot be realized if the outputs of any cell
in the last stage draw their inputs from the same (T - 1)-stage
subnetwork. As described in the following procedure, this principle
can be applied recursively to the last stages of each subnetwork until
a subnetwork consists of a 2 x 2 cell. For convenience, we work with
q = p-' in the procedure.

Proof: The proof is straightforward and omitted.

Procedure PERMUTATION(q, N; var y, realizable);
For y := 0 to N/2 - I d 0

If q(y) E 3-10 and q (y + N/2) E 3-11
then set cell S y , y + ~ / z to identity
else

If E 3-11 and Q(Y + (N/2)) E 70,
then set cell S y , y + ~ / z to transposition;
else realizable := false

endfor;
If N > 2 and realizable

then
begin
PERMUTATION (LOWER(q) , N/2)
If realizable then
PERMUTATION (UPPER(q) , N/2)
else {skip}
end;

endprocedure;
The variable realizable is initialized to true before the execution
of PERMUTATION starts. The for loop determines the states of
the cells in the last stage of the network subject to the condition
that their outputs be drawn from different subnetworks. If there is
no conflict, then the procedure calls itself to work on the upper
subnetwork, and then the lower subnetwork provided that realizable

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 2, FEBRUARY 1991 221

remains true. Functions LOWER(q) and UPPERfq) in the recursive
calls, respectively, refer to the first and second halves of map q. The
procedure repeats calling itself until either realizable becomes false,
or N = 2. Consequently, it either sets the network for mapp, or it
signals that p is not realizable.

Each call to PERMUTATION results in two calls to itself, and after
each call, the size of the network reduces by a factor of 2. Thus,
PERMUTATION is called once with value N, twice with value N / 2 ,
four times with value N / 4 , and so on up to N f 2 times with value 2.
Moreover, when it is called with value N / i ; i = 1,2,4, . . . , N / 2 , it
takes O (N / 2 i) times to process the for loop. Summing these steps,
the serial time complexity of this procedure becomes O (N log, N) .
This is optimal, since one needs at least O(N log, N) bits to code the
set of one-pass permutations of an N-input cube-connected network.
The space complexity of the procedure is determined by the stack
space for recursive calls which is O (N) .

Furthermore, by using N / 2 processors, the time needed to execute
the for loop can be reduced to O(1) per each call, and hence the
execution of the overall procedure to O(log, N) steps. This just
requires making realizable a shared variable, and executing the calls
to PERMUTATION for the upper and lower subnetworks in parallel.
As a result, the procedure halts after O(log, N) calls with each call
completed in O(1) time.

VI. CONCLUDING REMARKS
This paper presented optimal setup algorithms for cube-connected

networks using recursive Karnaugh maps. All procedures have been
shown to run in polynomial time and space. Procedure PERMUTA-
TION is the most general of all the procedures which are presented
in the paper, and can be used to determine whether a transposition, a
cycle, or a permutation is realizable in one pass by a cube-connected
network. It also specifies the states of the cells for the network in
question whenever the network can realize the given map. On the
other hand, procedure CYCLE requires fewer steps, and can be used
to realize w-cycles and arbitrary transpositions including those which
require two passes.

These procedures can easily be generalized to other O(log, N)
stage networks as well as to multipass cube-connected networks. It
may also be worthwhile to extend them to delta and generalized
interconnection networks [101, [11, since such networks share the
unique path property of cube-connected networks.

REFERENCES

L. N. Bhuyan and D. P. Agrawal, “Design and performance of general-
ized interconnection networks,” IEEE Trans. Comput., vol. C-32, no. 12,
pp. 1081-1090, Dec. 1983.
- , “Generalized hypercube and hyperbus structures for a computer
network,” IEEE Trans. Comput., vol. C-33, no. 4, pp. 323-333, Apr.
1983.
T. Feng, “A survey of interconnection networks,” IEEE Comput. Mag.,
vol. 14, no. 12, pp. 12-17, Dec. 1981.
J. Hayes er aZ., “A microprocessor-based hypercube supercomputer,”
IEEE Micro, vol. 6, no. 5, pp. 6-17, Oct. 1986.
S.-T. Huang and S. K. Tripathi, “Finite state model and compatibility
theory: New analysis tools for permutation networks,” IEEE Trans.
Compur., vol. C-35, no. 7, pp. 591-601, July 1986.
M. Kamaugh, “The map method for synthesis of combinational logic
circuits,” AIEE Trans., vol. 72, no. 9, pp. 593-599, Sept. 1953.
D.H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, no. 12, pp. 1145-1155, Dec. 1975.
K.Y. Lee, “On the rearrangeability of 2(10gz N) - 1 stage permuta-
tion networks,” IEEE Tram. Comput., vol. C-34, no. 5, pp. 412-425,
May 1985.
A.Y. O r u ~ and M. Mittal, “New algorithms for realizing paths and
permutations through cube-connected networks,” in Proc. ACM Compur.
Sci. Con$, Cincinnati, OH, Feb. 1986, pp. 137-146.

[IO] 1. H. Patel, “Performance of processor-memory interconnections for
multiprocessors,” IEEE Trans. Comput., vol. C-30, no. 10, pp. 771 -780,
Oct. 1981.

[I l l M. C. Pease, “The indirect binary N-cube multiprocessor array,” IEEE
Trans. Comput., vol. C-26, no. 5, pp. 458-473, May 1977.

[12] C.L. Seitz, “The cosmic cube,” Commun. ACM, vol. 28, pp. 22-33,
Jan. 1985.

[13] H. .I. Siege], Interconnection Networks for Large-scale Parallel Pro-
cessing: Theory and Case Studies. Lexington, MA: Lexington Books,
1985.

[14] D. Steinberg, “Invariant properties of the shuffle-exchange and simpli-
fied cost-effective version of the omega network,” IEEE Trans. Comput.,
vol. C-32, no. 5, pp. 444-450, May 1983.

[I51 C.-L. Wu and T. Feng, “On a class of multistage interconnection
networks,” IEEE Trans. Comput., vol. C-29, no. 8, pp. 694-702, Aug.
1980.

[16] -, “The reverse-exchange interconnection network,” IEEE Trans.
Comput., vol. C-29, no. 9, pp. 801-810, Sept. 1980.

A Parallel Time/Hardware Tradeoff
T . H = 0(2” ’2) for the Knapsack Problem

Afonso G. Ferreira

Abstract-In this paper, we propose a parallel algorithm that solves
a knapsack problem of size n in time T = O(n * (2”12)€) when
P = 0((2n /2) (1 -E)) , 0 < - E 5 1, processors are available. The algorithm
needs S = 0 (2 ” / ’) memory space in a shared memory. Let H (for
hardware) be the number of processors plus the number of memory cells
used by a parallel algorithm. The parallel algorithm that we describe
here takes a linear time proportional to (n/2) to find a solution when
P = 0(2”12), leading to a tradeoff T . H = 0(2”/’).

time/pmessor/memory tradeoff.
Index rems- Knapsack problem, NP-complete, parallel algorithms,

I. INTRODUCTION
Given n positive integers W = (w1, w ~ , . . . , w,) and a positive

integer M , the knapsack problem is the decision problem of finding
a set I C [l , n], such that w, = M , for i E I. In other words, one
searches for a binary n-tuple C* = (21, 22,. . . , 2,) that solves the
equation C wtxZ = M. This problem was proved to be NP-complete
[lo] and, unless NP = P, its complexity is exponential in n. The
original search space has 2“ possible values. An exhaustive search
would then take O (2 ”) time to find a solution in the worst case.

Solving the knapsack problem can be seen as a way to study some
large problems in number theory and, because of its exponential
complexity, some public-key cryptosystems are based on it [16].
Therefore, much effort has been done in order to find techniques
which could lead to practical algorithms with reasonable running
times.

In the literature, because of the exponential complexity of the
problem, factors which are single degree polynomials in the size of
the problem are usually neglected in the 0 notation. Notice that the
size of a knapsack problem can be defined either as the cardinality

Manuscript received February 26, 1988; revised September 25, 1989. The
author was on leave from the University of Sa0 Paulo, Brazil, and was
supported in part by a CAPES/COFECUB fellowship, Grant 503/86-9.

The author is with Laboratoire de 1’Informatique du Paralldlisme-MAG,
Ecole Normale Supdrieure de Lyon, 69364 Lyon Cedex 07 France.

IEEE Log Number 9037991.

0018-9340/91/0200-0221$01.~ 0 1991 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:15 from IEEE Xplore. Restrictions apply.

